Espérance et variance

Exercice 1 (\bigstar) . Soit $X \sim \mathcal{U}([-3,3])$ et $Y = X^2$. Déterminer la loi de Y ainsi que son espérance et sa variance.

Exercice 2 (\bigstar) . Soit $p \in [0,1]$ et $(X_i)_{i \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes suivant la loi $\mathcal{B}(p)$.

Pour tous i et n dans \mathbb{N}^* , on pose $Y_i = X_i X_{i+1}$ et $S_n = \sum_{i=1}^n Y_i$. Déterminer la loi de Y_i puis calculer $E(S_n)$.

Exercice 3 (\bigstar). Soit $n \in \mathbb{N}^*$ et X une variable aléatoire qui prend ses valeurs dans [0, n]. Pour tout $k \in [0, n]$, on suppose que $P(X = k) = \ln(a^k)$, où a est un réel strictement positif.

- 1. Montrer qu'il existe une unique valeur de a telle que X soit une variable aléatoire.
- 2. Pour cette valeur, calculer E(X) et V(X).

 $Indication: on \ pour ra \ utiliser \ sans \ d\'{e}monstration \ la \ relation \ \sum_{k=0}^n k^3 = \frac{n^2(n+1)^2}{4}.$

Exercice 4 (\bigstar). Soit X une variable aléatoire suivant une loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in]0,1[$.

- 1. Soit a > 0. Calculer l'espérance de $Z = a^X$.
- 2. Calculer l'espérance de $Y = \frac{1}{1+X}$.

Exercice 5 ($\bigstar \bigstar$). Soit $n \in \mathbb{N}^*$. Une urne contient 2n jetons indiscernables au toucher numérotés de 1 à 2n. Soit $k \in [1, 2n]$. On tire au hasard un jeton dans l'urne. Soit X la variable aléatoire associée au numéro obtenu. Si ce numéro est supérieur ou égal à k alors on note le numéro, sinon on remet le jeton dans l'urne et on retire un jeton dont on note alors le numéro. Soit Y la variable aléatoire associée au numéro noté.

- 1. Déterminer la loi de X.
- 2. Déterminer la loi de Y.
- 3. Pour quelle valeur de k l'espérance de Y est-elle maximale?

Exercice 6 ($\star\star$). On se propose d'analyser le sang d'une population de N individus pour déceler la présence éventuelle (résultat du test positif) d'un virus dont on sait qu'il affecte une personne donnée avec probabilité p. On dispose pour cela de deux méthodes :

- **Méthode 1** On analyse le sang de chacune des N personnes.
- **Méthode 2** On regroupe la population en m groupes de n individus (on a donc $m \times n = N$). On collecte le sang des n individus de chaque groupe dans une même éprouvette. Si le résultat d'un groupe est positif, on procède alors à une analyse individuelle de ses membres.
- 1. Quelle est la loi de la variable X égale au nombre de groupes positifs?
- 2. Soit Y la variable égale au nombre d'analyses dans la deuxième méthode. Calculer E(Y) en fonction de N, n et p.
- 3. Comparer les deux méthodes lorsque $N=1000,\,n=100$ et p=0,01. On utilisera l'approximation $0,99^{100}\simeq 0,366.$

Exercice 7 (\bigstar) . Soit X une variable aléatoire de loi uniforme sur [-1,1]. On note $Y=X^2$.

- 1. Montrer que les variables aléatoires X et Y ne sont pas indépendantes.
- 2. Calculer Cov(X, Y). Commenter.

Exercice 8 (\bigstar). On s'intéresse à $n \in \mathbb{N}^*$ voitures, qui se présentent à un péage : chaque voiture choisit au hasard et indépendamment l'une des trois barrières de péage disponibles. Pour $i \in \{1, 2, 3\}$, on note X_i le nombre de voitures ayant choisi la i-ème barrière.

- 1. Déterminer la loi de X_1 .
- 2. Calculer les variances de X_1 , X_2 et de $X_1 + X_2$.
- 3. En déduire la covariance de X_1 et X_2 .

Exercice 9 ($\bigstar \bigstar$). Soit $p \in]0,1[$. Une puce se déplace aléatoirement sur une droite d'origine 0. A chaque instant, elle fait un bond de taille 1 vers la droite ou vers la gauche avec les probabilités respectives p et q = 1 - p. A l'instant initial, la puce est à l'origine. Étant donné $n \in \mathbb{N}^*$, on note X_n l'abscisse de la puce à l'instant n.

- 1. Soit U une variable aléatoire suivant la loi $\mathcal{B}(p)$. Déterminer une fonction f affine telle que f(U) soit une variable aléatoire qui vaut 1 avec probabilité p, et -1 avec probabilité 1-p.
- 2. En déduire que X_n peut être mis sous la forme $X_n = 2S_n n$, où S_n est une variable de loi $\mathcal{B}(n,p)$.
- 3. En déduire la loi de X_n , son espérance et sa variance.
- 4. Comment se comportent $E(X_n)$ et $V(X_n)$ lorsque $n \to +\infty$? Interpréter.

Exercice 10 (\star). Un dé régulier est lancé 9000 fois. Minorer la probabilité d'obtenir le résultat 6 entre 1400 et 1600 fois en utilisant l'inégalité de Bienaymé-Tchebychev.

Exercice 11 ($\star\star$). On lance n fois un dé non pipé à six faces. En utilisant l'inégalité de Bienaymé Tchebychev, déterminer un minorant des valeurs de n pour lesquelles on a plus d'une chance sur deux d'obtenir une fréquence d'apparition de la valeur 1 qui s'écarte de moins de 10^{-2} de la valeur théorique $\frac{1}{6}$.

Exercice 12 (Type DS). Deux urnes A et B, initialement vides, peuvent contenir chacune au plus n boules $(n \ge 1)$. On s'intéresse au protocole suivant

- On choisit l'urne A avec la probabilité $\frac{1}{2}$, l'urne B sinon.
- On met une boule dans l'urne choisie.
- On répète cette épreuve autant de fois qu'il est nécessaire pour que l'une des urnes A ou B soit pleine, c'est-à-dire contienne n boules, les choix des urnes étant mutuellement indépendants.

On note R_n la variable aléatoire égale au nombre (éventuellement nul) de boules contenues dans l'urne qui n'est pas pleine, à l'issue de l'expérience.

- 1. Donner les lois de R_1 et R_2 . Justifier vos calculs.
- 2. Calculer l'espérance et la variance de R_1 et R_2 . Dans toute la suite de l'exercice, on suppose que $n \ge 2$.
- 3. Quel est l'ensemble $R_n(\Omega)$ des valeurs prises par la variable R_n ?
- 4. Soit k appartenant à l'univers image $R_n(\Omega)$.
 - (a) Calculer la probabilité qu'à l'issue du (n-1+k)-ième tirage l'urne A contienne n-1 boules et l'urne B contienne k boules.
 - (b) Donner alors la probabilité $P(R_n = k)$.
- 5. Vérifier que $\forall k \in [0, n-2], 2(k+1)P(R_n = k+1) = (n+k)P(R_n = k).$
- 6. Par sommation de la relation qui précède, en déduire que $E(R_n) = n (2n-1)P(R_n = n-1)$.
- 7. De façon analogue, montrer que $E(R_n^2) = (2n+1)E(R_n) n(n-1)$.
- 8. En déduire l'expression de $V(R_n)$ en fonction de n et $E(R_n)$.